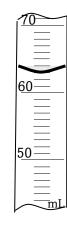
Practice Chemistry 120 Challenge Test (27 questions – Allow yourself 40 minutes to complete)

<u>Directions:</u> Select the response which most correctly answers each question. A calculator is required. A Periodic Table and a list of useful formulas and constants is provided on page 3. Answers are provided on the last page.

- 1. What is the mass of 0.345 moles of octane, a liquid with formula C_8H_{18} ?
 - a. 13.0 g
- b. 39.4 g
- c. 114 g
- d. 331 g
- 2. All of the following measurements have three significant figures *except*
 - a. 70.0 g
- b. 2.01×10^{-5} m
- c. 0.850 L
- d. 410 s
- 3. Which of the following statements is incorrect?
 - a. Potassium is an alkali metal.
 - b. Neon is a halogen.
 - c. Calcium is an alkaline earth metal.
 - d. Iron is a transition metal.
- 4. What is the name of the compound with formula Li₂S?
 - a. lithium sulfur
- b. lithium sulfate
- c. lithium sulfite
- d. lithium sulfide
- 5. An atom of magnesium-26 (²⁶Mg) has a 2+ charge. How many of each subatomic particle does it possess?
 - a. 12 protons, 14 neutrons, 14 electrons
 - b. 12 protons, 26 neutrons, 14 electrons
 - c. 12 protons, 14 neutrons, 10 electrons
 - d. 12 protons, 26 neutrons, 10 electrons
- 6. How many grams of KCl (MW = 74.55 g/mol) is needed to make 800. mL of a 0.650 *M* KCl solution?
 - a. 6.80 g
- b. 38.8 g
- c. 59.6 g
- d. 60.6 g
- 7. What is the symbol of silver?
 - a. Ag
- b. S

c. Si


d. Au

- 8. What is electron configuration of manganese (Mn)?
 - a. $[Ar]4s^23d^5$
- b. $[Ar]4s^24d^5$
- c. $[Ar]4s^13d^6$
- d. [Ar]4s¹4d⁶
- 9. A student lights a Bunsen burner and observes a large, yellow flame. What is the cause of this?
 - a. There is insufficient natural gas
 - b. There is too much natural gas
 - c. There is insufficient oxygen
 - d. There is too much oxygen

Refer to the following unbalanced chemical equation to answer Questions 10 and 11.

$$C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$$

- 10. What number appears in front of H₂O when this chemical equation is balanced with the lowest-possible whole numbers?
 - a. 6
- b. 7
- c. 12
- d. 14
- 11. What type of reaction is represented by the chemical equation?
 - a. single displacement b. combustion
 - c. combination
- d. decomposition
- 12. How should the volume reading on the figure to the right be reported?
 - a. 63 mL
 - b 63.0 mL
 - c. 63.00 mL
 - d. $6.3 \times 10^{2} \,\text{mL}$

Refer to the information below to answer questions 13 and 14.

CO₂ gas fills a rigid, 30.0-L container, and exerts a pressure of 1.25 atm at 80.0 °C.

- 13. What is the mass of the carbon dioxide in the container?
 - a. 1.29 g
- b. 5.71 g
- c. 56.9 g
- d. 251 g
- 14. What pressure will the gas exert if its temperature is increased to 125 °C?
 - a. 0.800 atm
- b. 1.11 atm
- c. 1.41 atm
- d. 1.95 atm
- 15. Which of the following is <u>not</u> a strong electrolyte solution?
 - a. KOH(aq)
- b. HCl(aq)
- c. NaCl(aq)
- d. $C_6H_{12}O_6(aq)$
- 16. A chemist pipets 10.0 mL of a 0.14 M MgCl₂ solution into a 250.0-mL volumetric flask and dilutes it to the mark. What is the molarity of MgCl₂ in the resulting solution?
 - a. $5.6 \times 10^{-3} M$
- b. 0.11 M
- c. 0.14 M
- d. 0.29 M
- 17. Which of the following 0.1 *M* aqueous solutions causes bubbles to form when combined with $0.1 M \text{ HNO}_3$?
 - a. NaHCO₃
- b. NaOH
- c. NaNO₃
- d. KCl
- 18. Which of the following is a correct Lewis structure for the nitrite ion, NO₂-?

$$^{a.}$$
 $\begin{bmatrix} \ddot{O} = N = \ddot{O} \end{bmatrix}$

$$\begin{bmatrix} \ddot{O} = N = \ddot{O} \end{bmatrix}^{T} \qquad ^{b.} \begin{bmatrix} \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \end{bmatrix}$$

$$c = \begin{bmatrix} c = 0 \end{bmatrix}$$

$$\begin{array}{c} c \cdot \left[\begin{array}{ccc} & & & \\ & & \\ & & \end{array} \right]^{-} & \begin{array}{c} & & \\ & & \\ & & \end{array} \right]$$

- 19. Which of the following choices ranks atoms of Ne, K, Rb, and He in order from smallest atomic radius to largest?
 - a. Rb < Ne < K < He
 - b. Rb < K < Ne < He
 - c. He < K < Ne < Rb
 - d. He < Ne < K < Rb
- 20. Which of the following molecules has no dipole moment?

21. What is the answer to the following calculation, rounded to the correct number of significant figures?

$$\frac{9.0+8.17}{1.16} = ?$$

- a. 14
- b. 14.8
- c. 14.80
- d. 15
- 22. What is the net-ionic equation for the reaction which occurs between calcium chloride and sodium phosphate?

a.
$$3 \operatorname{Ca}^{2+}(aq) + 2 \operatorname{Na}_{3}\operatorname{PO}_{4}(aq) \longrightarrow$$

b.
$$3 \text{ Ca}^{2+}(aq) + 2 \text{ PO}_4^{3-}(aq) \longrightarrow \text{Ca}_3(\text{PO}_4)_2(s)$$

c.
$$Na^+(aq) + Cl^-(aq) \rightarrow NaCl(s)$$

d.
$$CaCl_2(aq) + 2 Na^+(aq) \rightarrow$$

$$Ca^{2+}(aq) + 2 NaCl(s)$$

- 23. Which of the following volumes is equivalent to 243 mL?
 - a. 243,000 L
- b. $2.43 \times 10^{-6} \mu L$
- c. 24,300 nL
- d. 0.243 L

24. Using the balanced equation below, determine the minimum volume of 0.150 M NaF solution required to form 2.00 g of BaF_2 .

 $Ba(NO_3)_2 + 2NaF \rightarrow BaF_2 + 2NaNO_3$

- a. 46.7 mL
- b. 76.1 mL
- c. 93.4 mL
- d. 152 mL
- 25. What volume in cubic centimeters is equivalent to 0.588 quarts?
 - a. 556 cm³
- b. 622 cm³
- c. $5.56 \times 10^{-4} \text{ cm}^3$
- d. $6.22 \times 10^{-4} \text{ cm}^3$

- 26. To raise the temperature of a 10.0 g piece of metal from 25.0 °C to 50.0 °C requires 150. J of heat to be supplied. How much heat is needed to raise the temperature of a 95.0 g piece of the same metal from 60.5 °C to 72.5 °C?
 - a. 327 J
- b. 684 J
- c. 936 J
- d. 1220 J
- 27. The change of state of a solid to a gas is called
 - a. condensation
- b. boiling
- c. sublimation
- d. deposition

	1																	18
	1A																	8A
	1																	2
1	Н	2											13	14	15	16	17	He
	1.008 2A Periodic Table of the Elements												3A	4A	5A	6A	7A	4.003
	3	4											5 B	6	7	8	9	10
2	Li	Be												С	N	0	F	Ne
	6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
	11	12											13	14	15	16	17	18
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	ΑI	Si	Р	S	CI	Ar
	22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	190.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111							
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
	(223)	(226)	(227)	(263)	(262)	(266)	(264)	(269)	(268)	(272)	(272)							

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Formulas and Constants

$$R = 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$$

$$PV = nRT$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$q = m \cdot \Delta T \cdot (sp.heat)$$

$$T_{\text{(in Kelvin)}} = T_{\text{(in Celcius)}} + 273.15$$

$$1 \text{ atm} = 760. \text{ mm Hg}$$

Avogadro Number:
$$6.022 \times 10^{23}$$

$$1 \text{ inch} = 2.54 \text{ cm (exactly)}$$

$$1 \text{ mL} = 1 \text{ cm}^3$$
 $1 \text{ L} = 1 \text{ dm}^3$

$$1 I_{\cdot} = 1 dm^{3}$$

$$1 L = 1.057$$
 quarts

Answers

- 1. b
- 2. d
- 3. b
- 4. d
- 5. c
- 6. b
- 7. a
- 8. a
- 9. c
- 10. d
- 11. b
- 12. b
- 13. c
- 14. c
- 15. d
- 16. a
- 17. a
- 18. d
- 19. d
- 20. d
- 21. b
- 22. b
- 23. d
- 24. d
- 25. a
- 26. b
- 27. c

You will be provided with a Periodic Table and the same constants/equations for the actual placement exam as were given here.